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We show that the spectral radius of an N × N random symmetric matrix with i.i.d.
bounded centered but non-symmetrically distributed entries is bounded from above by
2σ + o(N−6/11+ε), where σ 2 is the variance of the matrix entries and ε is an arbitrary
small positive number. Our bound improves the earlier results by Z. Füredi and J.
Komlós (1981), and Van Vu (2005).
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1. MODEL

We consider random symmetric matrices with i.i.d. centered but non-
symmetrically distributed entries above the diagonal. To be more precise, let
µ be a probability distribution with compact support K such that∫

R

x dµ = 0,

∫
R

x2 dµ = σ 2,

∫
R

x3dµ = µ3 �= 0 and

∫
R

|x |k dµ ≤ K k, ∀k ≥ 4. (1)

Consider a sequence of random symmetric matrices

AN = 1√
N

(ai j )
N
i, j=1,
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where the ai j , i ≤ j are i.i.d. random variables with distribution µ. The scope of
this paper is to investigate the limiting spectral radius of the random matrix AN as
N goes to infinity.

To obtain an upper bound on the spectral radius of AN , we compute the
asymptotics of expectation of traces of high powers of AN :

E
[
T r A2sN

N

]
, where sN → ∞ as N → ∞. (2)

1.1. Results

The main result of the paper is the following

Theorem 1.1. Let λmax be the largest eigenvalue of the matrix AN and ε > 0.
Then

λmax ≤ 2σ + o(N−6/11+ε) (3)

with probability going to 1 as N → ∞.

Remark 1.1. A similar result holds in the Hermitian case. Since the proof is
essentially the same, we will discuss only the real symmetric case in this paper.
Our result also holds true if one replaces the largest eigenvalue of AN by its
spectral norm ‖AN ‖ = maxi |λi |.

Theorem 1.1 is a simple corollary of the following technical result. Let us
denote by MN the matrix (ai j )N

i, j=1.

Proposition 1.1. Assume that sN = O(N 1/2+η) where η < 1/22. Then

E[Tr M2sN
N ] = E[Tr W 2sN

N ](1 + o(1)),

where WN is a standard Wigner matrix with symmetrically distributed sub-
Gaussian entries of variance σ 2.

The asymptotics of E[Tr W 2sN
N ] was calculated in Refs. 10–12. In particular,

E
[
Tr W 2sN

N

] = N sN +1T0,2sN σ 2sN (1 + o(1)) = N sN +1

π1/2s3/2
N

(2σ )2sN (1 + o(1)). (4)

as long as sN = o(N 2/3). In (4), T0,2s is the famous Catalan number, counting the
number of possible trajectories of a simple random walk of length 2s in the positive
quadrant that return to the origin. Such trajectories are also known as Dyck paths.
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A standard application of the Markov inequality then derives the upper bound (3)
from Proposition 1.1. since

E(λmax)2sN ≤ E‖AN ‖2sN ≤ E
[
Tr A2sN

N

]
.

We note that the leading term 2σ in 3 is the right edge of the Wigner semicircle
law.2,16,17!

Theorem 1.1 strengthens upper bounds on the largest eigenvalue of Wigner
random matrices with non-symmetrically distributed entries obtained earlier by
Füredi and Komlós (4) and Vu. (15) We recall that in Ref. 4 the authors established
that λmax ≤ 2σ + O(N−1/6 ln N ), and recently Vu(15) improved the upper bound
to λmax ≤ 2σ + O(N−1/4 ln N ). It was shown by Guionnet and Zeitouni, (5) and
Alon, Krivelevich, and Vu(1) by applying the concentration of measure technique
that the largest eigenvalue is strongly concentrated around its mean. Namely (see
Ref. 6)

P(|λmax − E(λmax)| ≥ K t N−1/2) ≤ 4e−t2/32, (5)

where K is the uniform upper bound of the matrix entries {ai j } from (1). Using
the technique presented in this paper, one can also obtain a lower bound on the
spectral norm of AN . Namely, we show in Ref. 9 that for any positive ε > 0
one has the lower bound ‖AN ‖ ≥ 2σ − N−6/11+ε, with probability going to 1 as
N → ∞.

More is known if the matrix entries of a Wigner matrix are sub-Gaussian and
have symmetric distribution. Then the largest eigenvalue deviates from the soft
edge 2σ on the order O(N−2/3) and the limiting distribution of the rescaled largest
eigenvalue can be shown(12) to obey Tracy-Widom law(14):

lim
N→∞

P
(
λmax ≤ 2σ + σ x N−2/3

) = exp

(
−1/2

∫ ∞

x
q(t) + (t − x)q2(t) dt

)
,

where q(x) is the solution of the Painléve II differential equation q ′′(x) = x q(x) +
2q3(x) with the asymptotics at infinity q(x) ∼ Ai(x) as x → +∞. It is reasonable
to expect that in the non-symmetric case, the largest eigenvalue will have the Tracy-
Widom distribution in the limit as well. However, at this moment this question is
beyond the reach of our technique.

1.2. Sketch of the Proof

To investigate the leading term in the asymptotic expansion of (2), we use
the combinatorial machinery developed for the standard Wigner random matrices
with symmetrically distributed entries. Writing down the trace of A2sN

N in terms of
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the matrix entries of AN , one obtains that

E
[
T r A2sN

N

] =
∑

i0,i1,...,is2N−1

E

[
2sN −1∏

j=0

ai j i j+1√
N

]
, (6)

where we use the convention that i2sN = i0. We associate a path P on the set of N
vertices {1, 2, . . . , N } to each term in the expansion of (2) as follows

P = i0 → i1 → i2 → . . . i2sN −1 → i2sN = i0. (7)

As the entries ai j are centered, for a term in the above sum (6) to yield a non zero
contribution, all its (non-oriented) edges must appear at least twice. Due to the
fact that the entries are not symmetrically distributed, such a path can admit edges
which appear an odd number of times. By the above remark, only the paths with
odd edges appearing at least three times have to be taken into account. Clearly, a
path of even length must have an even number of odd edges. Let us denote the
number of odd edges by 2l.

The contribution of even paths (no odd edges) is known from the results
established by Ya. Sinai and one of the authors in Refs. 10, 11. The combinatorial
technique presented in these papers was further extended in Refs. 7, 8, 12, 13.

Before considering the combinatorics, we start with a few preliminary defi-
nitions.

Definition 1.1. A closed path is a sequence of edges P = {(i0, i1), (i1, i2),
. . . , (isN−1 , isN )} starting and ending with the same vertex (i.e. isN = i0). A path
admitting at least one odd edge is called an odd path.

Definition 1.2. When a (non-oriented) edge appears in a path P an odd number
of times, we call its last occurrence a non closed edge or a non-returned edge.

Definition 1.3. The instant j is said to be marked for the closed path P if a
non-oriented (i j−1, i j ) occurs in P an odd number of times up to the moment j
(included). The other instants are said to be unmarked.

Remark 1.2. It is possible to show that one can use the technique of Ref.
10 to obtain a polynomial upper bound on E[T r A2sN

N ] for sN ≤ ConstN 1/4 thus
recovering the upper bound

λmax ≤ 2σ + O(N−1/4 ln N ) (8)

obtained in Ref. 15. To show this, we start with the path P from (7) and construct
a new path P̃ in the following way. The new path P̃ will be a closed even path of
length 2sN + 2l on the set of N + 1 vertices {1, 2, . . . , N + 1}. We keep all edges
that are not non-returned edges of P exactly as they appear in P. All together,
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there are 2sN − 2l instances of time corresponding to the edges that are not non-
returned. In addition, there are 2l instances corresponding to non-returned edges.
These 2l instances correspond to the last occurenc es of odd edges. Suppose for
example that at moment 0 < j ≤ 2sN an odd edge (i j , i j+1) appears for the last
time. Then in the path P̃ , we replace the edge (i j , i j+1) with two edges (i j , N + 1)
and (N + 1, i j+1). We do the same thing for all 2l non-returned edges. It is not
difficult to see that the set of (non-oriented) non-returned edges can be viewed as
a union of cycles. Therefore, each vertex appears an even number of times as an
end point of a non-returned edge. One can show then that the path P̃ is an even
closed path, and it has at least 2l self-intersections. We conclude that (6) can be
bounded from above by

(constN )l
∗∑

i0,i1,...,i2sN +2l−1

E

[
2sN +2l−1∏

j=0

ai j i j+1√
N

]
, (9)

where the sum in (9) is restricted only to closed even paths with at least 2l self-
intersections. It was shown in Ref. 10 that the sum

∑∗ is bounded from above
by

(s2
N /N )2l

(2l)!
E

[
T r W 2sN +2l

N+1

]
.

The bound implies that

E
(
λ2sN

max

) ≤ E
[
T r A2sN

N

] ≤ const
N

s3/2
N

exp
(
consts2

N /n1/2
)

(10)

and the bound (8) follows by applying the Markov inequality.

In this paper, we mainly concentrate on the contribution of paths that admit
odd edges. Note that due to Assumption (1), each path contributing to (6) admits
an even number of odd edges. The idea of the proof is to notice that a path of
length 2s with 2l > 1 odd edges can be obtained from an even “path” P ′ (which
could be a single closed even path or a collection of several closed paths) of length
2s − 2l by inserting at some moments of time the unreturned edges (see Definition
2.2 below), chosen amongst the edges of P ′. The contribution of non-even paths
can then be estimated from the contribution of even paths of smaller length. We
then use the asymptotics established in Refs. 10, 11 to study their contribution to
(2). As the reader will see, the arguments presented in this paper are somewhat
simpler in the case sN = o(

√
N ) which is presented in Sec. 3 (the proof of the

Proposition 1.1 in this regime implies the upper bound λmax ≤ 2σ + o(N−1/2+ε)
for any arbitrary small ε > 0.) The case of greater scales requires some additional
ideas presented in Sec. 4.
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2. FROM AN ODD PATH TO AN EVEN PATH

In this section, we define a procedure which, starting from a path P of length
2s with 2l odd edges, associates a new “path” P ′. In general, P ′ will not be a
single path but rather a sequence of paths. Nevertheless, it will be convenient to
think about P ′ as a path. P ′ will be of length 2s − 2l and will have the same edges
as P , except that the last occurrence of each odd edge will be removed. As a result,
each edge will appear in P ′ an even number of times.

2.1. Description of the Gluing Procedure

Consider a path P of length 2s and with 2l non-returned edges. The set
of the moments of the last occurrences of the odd edges is, by definition, a
subset of {1, 2, . . . , 2s}, and we can view it as a union of J disjoint non-empty
intervals on the integer lattice, 1 ≤ J ≤ 2l. As a result, we split the set of the
odd edges into 1 ≤ J ≤ 2s disjoint subsequences. We denote these subsequences
by Si , i = 1, . . . , J . Let also ei (resp. fi ) be the left (resp. right) endpoint of Si

and set f0 = eJ+1 = i0 where i0 is the origin of the path P . Finally, define J + 1
subpaths of P as follows. Let Pi , i = 0, . . . , J be the subpath starting at fi and
ending at ei+1. Now, we are going to show that we can reorder the Pi ’s in such a
way that we obtain a succession of subpaths. The following result is a basic fact,
which we state as a lemma.

Lemma 2.1. For any i = 1, . . . , J , there exists i ′ ∈ [1, J ] such that ei = ei ′ or
ei = fi ′ .

We choose the way to reorder the subpaths P0, . . .PJ as follows. At this
point, it is useful to associate to the set of the subpaths Pi , 0 ≤ i ≤ J a graph G
on the set of vertices L = {ei , fi , i = 0, . . . , J }. G is built as follows. We draw an
edge between two vertices vi , v j ∈ L if there exists a subpath Pk admitting vi and
v j as the end points. Denote by 1 ≤ I ′ ≤ J the number of connected components
of G. It is a basic fact in the Graph Theory that we could glue the subpaths Pi

associated to the same connected component of G without raising a pen. Yet, we
do not impose such a restriction in the gluing procedure and consider all possible
gluings.

Let us consider the subpaths associated to the vertices of the connected
component of i0 in the order they are read in P . We first read P0. By the definition
of P0, the right end point of P0 is e1. We then choose another subpath Pi1 which
also has e1 as an end point. The existence of such a path follows from Lemma
2.1. We glue these two subpaths in the following way. We read the edges of Pi1 in
the reverse direction if e1 is the right end point of Pi1 or in the forward direction
otherwise. Call Po ∪ Pi1 the subpath obtained. To iterate the procedure, we now
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look for a path Pi2 , i2 �= 0, i1 one of which end points coincides with the right
end point of Po ∪ Pi1 . We then glue Pi2 to Po ∪ Pi1 in the same way as explained
above and obtain the subpath P0 ∪ Pi1 ∪ Pi2 . We keep gluing the subpaths until
we obtain the subpath P0 ∪ Pi1 ∪ . . .Pik , 1 ≤ k ≤ J − 1 which is a closed path
(i.e. its terminal point coincides with the starting point i0). At this moment, we
stop the procedure and start a new gluing as follows. If i0 occurs as an end point
of some subpath P j which has not been glued yet, we read the subpath P j in such
a direction that its starting point is i0 and we start a new gluing procedure with
this subpath. Otherwise, we consider the first Pi which has not yet been glued.
An important observation is that its left end point has necessarily occurred in
Po ∪ Pi1 ∪ . . .Pik , due to the fact that there exists a sequence of odd edges in P
leading to this vertex and starting from one of the endpoints of P0, or Pi1 , . . . or
Pik . We iterate the gluing procedure starting with Pi . We use the same procedure
for all connected components of G. As a result of the gluing procedure described
above, we end up with a sequence of I0 ≥ I ′ paths, denoted W̃i , 0 ≤ i ≤ I0 − 1
with origins vi j ∈ L, 0 ≤ j ≤ I0 − 1, vi0 = i0.

Our next goal is to construct a “path” P ′ by the concatenation of the paths
W̃i , Let us re-order the paths W̃i arbitrarily (except that we start with P0) in such a
way that we first read all the paths with the origin i0. We call W0 the path obtained
by the concatenation of these paths. Then, we read all the paths with origin v1 and
concatenate them obtaining W1, and so on. As a result, we obtain a sequence of
paths W0, W1, . . . , WI−1. Finally, we concatenate these paths, and denote by P ′

the “path” obtained by the concatenation of the Wi , 0 ≤ i ≤ I − 1. Note that P ′ is
not necessarily a real path in a sense of the Definition 2.1, since at the end of each
Wi , in principle, one can switch to another vertex. Nevertheless, the order in which
the paths Wi are constructed ensures that the origin of a path where such a switch
happens is a marked vertex of P ′. Furthermore, the vertices of P ′ corresponding
to the instants of such switches are pairwise distinct.

Remark 2.1. Let us estimate the number of possible ways to glue the sub-paths
Pi associated to a given path P . Call Ei the class of vertices occuring 2i times as
an endpoint of a sequence of odd edges in P . Set Ei := �Ei . Then there are at least

J∏
i=2

(i!)Ei const, const < 1, (11)

possible gluings associated to a given path P . Indeed, there are (2A − 1)(2A −
3) · · · 3 · 1 possible ways to glue subpaths with a common vertex v, v ∈ EA as an
end point (we just partition the set of such subpaths into pairs). One can also note
that Po necessarily starts the path and that each vertex being the origin of a Wi is
glued one time less. The estimate (11) will be of importance in Sec. 4.1.1.
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Remark 2.2. Actually, the order in which the W ′
i s are read in P ′ will be irrelevant

in the following. The important fact is that the origin of each Wi , i ≥ 1 is a marked
vertex of P ′ and that they are pairwise distinct. The gluing procedure can also be
seen as associating a path W0 starting with i0 and a collection of unordered paths
Wi , i > 1, all of which have a marked origin.

2.2. The Structure of P ′

In this subsection, we study in more detail the structure of P ′. Three cases
can occur:

• Case A: the gluing procedure leads to one real closed even path P ′ (in a
sense of Definition 1.1).

• Case B: the gluing procedure leads to a “path”P ′ which is really a sequence
of I ≥ 2 closed even paths with respective origins {i0, vi , 1 ≤ i ≤ I − 1}
and where each vi is a marked vertex of the path P ′.

• Case C: the gluing procedure leads to a sequence of I ≥ 2 paths, some
with odd edges. In this case, the I paths also have respective origins i0,
vi , i ≤ I − 1, where each vi is a marked vertex of the pathP ′. Furthermore,
the union of these paths has only even edges.

In all the cases, P ′ is of length 2s − 2l.
In Case C, where at least one path Wi has “odd” edges, we apply an additional

gluing procedure, which glues some of the paths Wi together so that we will end
up, as in the preceding case, with a sequence of closed even paths of total length
2s − 2l − 2q for some q > 0. The goal here is to show that the paths of Case C
are negligible with respect to those of Case B or Case A. This part appeals to some
results established in Refs. 10, 11. As the union of the paths Wi has only even
edges, each edge which is odd in some Wi is also odd in some other path W j . Here
we use the construction procedure already used in Ref. 10 to glue the paths.

Let ĩ denote the smallest index such that Wĩ has an odd edge. Let then ẽ
(resp. tẽ) be the first occurrence of an odd edge in Wĩ (resp. the instant of the first
occurrence) and j̃ > ĩ be the smallest index such that W j̃ has the edge ẽ as an odd
edge. Let also t ′

ẽ be the instant of the first occurrence of ẽ in W j̃ . Then, we are
going to form Wĩ ∨ W j̃ as follows. Assume first that the occurences of the edge ẽ
at instances tẽ in Wĩ and t ′

ẽ in W j̃ have opposite directions. In this case, we read
the first tẽ − 1 edges of Wĩ , then switch to W j̃ and read the edges of W j̃ from the
instant t ′

ẽ + 1 to the end of W j̃ . After that, we restart at the origin of W j̃ and read
all the edges of this path until (but not including) the selected occurrence of the
edge ẽ. At this point we switch back to Wĩ and finish by reading its remaining
edges. As a result, we obtain the path Wĩ ∨ W j̃ by erasing the edge ẽ twice: once
from Wĩ and once from W j̃ .
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If te and t ′
e are in the same direction, the procedure is quite similar. The

difference is that we then read the edges of W j̃ in the reverse direction. We read
the first t ′

ẽ − 1 edges of W j̃ backwards and so on. We again end up with a path
Wĩ ∨ W j̃ of length l(Wĩ ) + l(W j̃ ) − 2. As a result of this procedure, we replace
two paths Wĩ and W j̃ with one path Wĩ ∨ W j̃ . In the process, we erased two
appearances of a non-oriented odd edge. We continue this algorithm until we end
up with a sequence of I − I1 closed even paths. If we repeat the described gluing
procedure I1 times, we erase in the process 2I1 appearances of odd edges. The total
length of the union of the final Dyck paths obtained in this way is 2s − 2l − 2I1.

Let us denote these I − I1 closed even paths by D j , j = 0, . . . , I − I1 − 1.
They are of total length 2s − 2l − 2I1. To reconstruct the paths Wi , 0 ≤ i ≤ I − 1
from the paths Di , 0 ≤ i ≤ I − I1 − 1, one has to choose a) the moments where
one erased the I1 edges, one of which we denoted above by ẽ, b) the lengths, and c)
the origins of the I1 paths corresponding to the instants of switch. A trivial upper
bound for the number of preimages {Wi , i = 0, . . . , I − 1} of these I − I1 Dyck
paths is (

2s

I1

)
(4s)I1 (2s)I1 .

Now due to the fact that such a choice of the origins, lengths and instants of switch
of the glued paths determines the odd edges glued pairwise, the weight of the
I − I1 Dyck paths is multiplied by a factor of order (const/N )I1 . Therefore, the
number of preimages times the multiplying factor (const/N )I1 is at most of order

(
2s

I1

)
×

(
const × s2

N

)I1

�
(

2s

I1

)
if s �

√
N . (12)

One then can use this estimate below in Sec. 3.1.2, formula (28) to show that such
configurations are negligible if sN � √

N . We recall here that we use the notation
aN � bN when the ratio aN /bN goes to zero as N → ∞.

To consider greater scales that we study in this paper (up to N 1/2+η, η <

1/22), we need to improve an upper bound at the l.h.s. of (12). Consider a closed
even path D j . Without loss of generality, we can assume j = 1, and consider
the path D1. Let us denote by x1(t) the simple random walk trajectory trajectory
associated with D1 and by 2s ′

1, the length of D1.

Assume also that D1 has been glued from I ′
1 + 1 ≥ 2 paths (without loss

of generality, we can assume that these paths (in the order of gluing) are
W1, W2, . . . , WI ′

1+1). Let us denote by t1 the moment of time in the path D1 that
corresponds to the instant when we glued W1 and W2 together to form W1 ∨ W2,

let us denote by t2 > t1 the moment of time that corresponds to the instant when we
glued W1 ∨ W2 with W3 to form W1 ∨ W2 ∨ W3, and so on. Finally, we denote by
tI ′

1
> tI ′

1−1 the moment of time that corresponds to the instant of switch when we
glued W1 ∨ W2 . . . ∨ WI ′

1
and WI ′

1+1 to form W1 ∨ W2 . . . ∨ WI ′
1+1 = D1. Let us
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denote by l j the length of the path W j , 1 ≤ j ≤ I ′
1 + 1. It follows from the gluing

procedure that the random walk trajectory x1(t) does not descend below the level
x1(t1) during [t1, t1 + l2 − 1]. Also, once l2 is given, there are at most l2 possible
choices for the origin of the path W2 when we reconstruct it from D1. When we
glue the path W3 to W1 ∨ W2 in such a way that the edge along which we glue
them belongs to W1 then t2 ≥ t1 + l2, and the random walk trajectory x(t) does
not descend below the level x1(t2) during the interval [t2, t2 + L3], L3 = l3 − 1.

We also remark that there are at most l3 possible choices for the origin of the path
W3. If instead the edge along which we glue W3 to W1 ∨ W2 belongs to W2, then
we have t2 ∈ (t1, t1 + l2), and the random walk trajectory does not descend below
the level x1(t2) during the interval [t2, t2 + L3], L3 = l2 + l3 − 2. Again, there are
at most l3 possible choices for the origin of the path W3. A similar reasoning
can be applied when we consider the gluings of W4 to W1 ∨ W2 ∨ W3, and so
on.

If I ′
1 = 1, i.e. D1 was obtained by gluing just two paths W1 and W2, we see

that the number of preimages of D1 is bounded from above by

∑
t1≤2s ′

1

∑
l2≤2s ′

1−t1

1{x1(t)≥x1(t1),t∈[t1,t1+l2]}2l2 ≤ (4s ′
1)KN (xi (·)), (13)

where

KN (xi (·)) =
∑

t1≤2s ′
1

∑
l2≤2s ′

1−t1

1{x1(t)≥x1(t1),t∈[t1,t1+l2]}. (14)

We note that the factor 2l2 in (13) comes from the determination of the origin and
the direction of W2, and the bound 2l2 ≤ 4s ′

1 is trivial.
In the general case I ′

1 ≥ 1, the number of preimages of D1 is bounded from
above by

∑
0<t1<t2<···<tI ′1

<2s ′
1

I ′
1∏

j=1

( ∑
L j+1≤2s ′

1−t j

1{x1(t)≥x1(t j ),t∈[t j ,t j +L j+1]}2l j+1

)
, (15)

where, as we explained above, L j is a sum of l j − 1 and some of the (li − 1)
with indices i < j. Bounding

∏
j 2l j+1 from above by 2I ′

1 ((2s ′
1 + 2I ′

1)/I ′
1)I ′

1 ≤
ConstI ′

1
(2s ′

1
I ′
1

)
, we obtain that in the general case I ′

1 ≥ 1, the number of preimages

of D1 is bounded from above by

ConstI ′
1

(
2s ′

1

I ′
1

)
K

⊗I ′
1

N (x1(·)), (16)
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where

K
⊗I ′

1
N (x1(·)) =

∑
0<t1<t2<···<tI ′1

<2s ′
1

I ′
1∏

j=1

( ∑
L j+1≤2s ′

1−t j

1{x1(t)≥x1(t j ),t∈[t j ,t j +L j+1]}

)
,

(17)

Since the matrix entries of AN are of order of 1/
√

N , the “restoration” of
each of I ′

1 edges during the reconstruction of the paths Wi ’s from D1 contributes
the additional factor (const/N )I ′

1 . Therefore, we need to bound from above the
number of preimages of D1 times the factor (const/N )I ′

1 . Let us denote by E2s ′
1

the expectation with respect to the uniform distribution on the set of Dyck paths
of length 2s ′

1. We are looking for an upper estimate on

(const/N )I ′
1 ConstI ′

1

(
2s ′

1

I ′
1

)
E2s ′

1

(
K

⊗I ′
1

N (x1(·))).
The calculation of the upper bound are similar to the ones in Lemma 1 of Ref.

10 (see also the discussion on page 128 of Ref. 11). For example, it was shown in
Ref. 10 that

E2s

(∑
t1≤s

1{x(t)≥x(t1),t∈[t1,t1+s]}

)
= 2

√
s

π
(1 + o(1)). (18)

Almost identical calculations establish that

E2s ′
1

(
KN (x1(·))) ≤ Const(2s ′

1)3/2 (19)

and, in general,

E2s ′
1

(
K

⊗I ′
1

N (x1(·))) ≤ (
Const(2s ′

1)3/2
)I ′

1 (20)

for some constant Const > 0. For the convenience of the reader, we sketch the
proof of (19) and (20) in the Appendix.

As a result, we obtain

(const/N )I ′
1 ConstI ′

1

(
2s ′

1

I ′
1

)
E2s ′

1

(
K

⊗I ′
1

N (x1(·))) ≤
(

2s ′
1

I ′
1

)

×
(

Const × s3/2

N

)I ′
1

�
(

2s ′
1

I ′
1

)
(21)

as long as sN � N 2/3. Again, this estimate is enough for our purposes to show in
Sec. 3.1.2 (see (27), (28)) that the contribution of such configurations is negligible
in the large-N-limit.
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3. THE INSERTION PROCEDURE AND THE CASE WHERE sN � √
N

In this section, we prove the following result. Denote by Ze (resp. Zo) the
contribution of even (resp. odd) paths.

Proposition 3.1. Let sN be some sequence such that sN → ∞, sN � √
N as

N → ∞. Then

E
[
T r A2sN

N

] = Ze(1 + o(1)) = (1 + o(1))N T0,2sN σ 2sN . (22)

In view of the result of Ref. 10, Proposition 3.1 is a special case of Proposition
1.1 (in the regime sN � √

N ). The proof of Proposition 3.1 is the goal of the
whole section. We first define the basic combinatorial tool, namely the insertion
procedure that we will use to estimate the expectation (2). The basic idea is the
following. The contribution of even paths is well-known from the calculations
presented in Ref. 10. We then estimate the number of ways to insert non-returned
edges in an even path in such a way that the final path has a given number of odd
edges (each being read at least three times). In the process, we estimate the weight
of the final path in terms of the weight of the initial even path. This finally allows
us to consider the contribution of odd paths to the expectation (2).

3.1. The Insertion Procedure

We are going to define the procedure which is the reverse one to the
gluing procedure described in Sec. 2. The new procedure will prescribe how
to insert sequences of odd edges into a given path P ′ to construct the path
P = {(i0, i1), (i1, i2), . . . , (isN−1 , isN )}. This reverse procedure will allow us to es-
timate the contribution of odd paths. To this aim, we consider all possible paths P ′

and all possible ways to insert odd edges into such paths. In the gluing procedure,
when some of the J vertices are repeated, there are multiple ways to glue the
paths Pi . The counterpart for the insertion procedure will be that, given a path P ′

and a sequence of J instants along this path, each time a vertex occurs 2i times
as an endpoint of a sequence of odd edges, the insertion procedure will be non
determined.

3.1.1. The Simple Case: Case A

Assume given a closed even path P ′, of the length 2m = 2sN − 2l. Here we
assume that we know all the edges read inP ′ and the order in which these edges are
read. To reconstruct the path P we need to construct the subpaths Pi , i = 0, . . . , J
from the path P ′, and insert between the P ′

i s the J sequences S1, . . . , SJ of odd
edges. To this end, we first choose J vertices amongst the vertices P ′. There are at
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most
(2m

J

)
such choices. The chosen J vertices then split P ′ into J + 1 subpaths

Ri , i = 0, . . . J, so that these vertices together with the starting point of the path
P ′ are the endpoints of the subpaths Ri , i = 0, . . . J. We also set P0 = R0. The
subpaths Pi , i = 1, . . . J differ from Ri , i = 1, . . . J only by the order in which
they are read and (perhaps) the directions in which they are read. Since there are
2 choices for the direction of each of the paths and J ! ways in which one can
order the paths, there are at most J !2J ways to reconstruct Pi , i = 1, . . . J from
Ri , i = 1, . . . J. We can choose the number of unreturned edges we assign to each
of the sequences Si , 1 ≤ i ≤ J in

(2l
J

)
ways (indeed, we look for the number of

ways to write 2l as a sum of J positive integers). Finally, we choose an ordered
collection of 2l − J edges from the set of edges of P ′. We can do it in at most

(2m)!
(2m−2l+J )! ways. It should be noted that it is enough to select 2l − J and not
2l odd edges since we already know the end points of each sequence Si of odd
edges.

Multiplying these factors together, we obtain

(
2m

J

)
J !2J

(
2l

J

)
(2m)!

(2m − 2l + J )!
.

The last thing that we have to take into account is that the weight E(
∏2sN −1

j=0

ai j i j+1√
N

)

of the path P is different from that of P ′ since the odd edges from the path P
appear one less time in the path P ′. As the marginal distribution of the matrix
entries ai j has bounded support, it follows that the weight of the path P is at most
(K/

√
N )2l times the weight of the path of P ′, where K is some constant that

depends only on the marginal distribution of the matrix entries. On the other hand,
the following upper bound for the total weight of even paths of length 2s − 2l can
be inferred from Ref. 11. Define

Z (l) :=
∑

even paths P ′
E

[
2s−2l−1∏

j=0

ai j i j+1√
N

]
.

Lemma 3.1. There is a constant C1, independent of l, such that for any sequence
sN � N 2/3,

Z (l) ≤ C1 N T0,2sN −2lσ
2sN −2l , where T0,2sN −2l = (2sN − 2l)!

(sN − l + 1)!(sN − l)!
.

From Lemma 3.1 and the above estimate on the number of preimages of paths
P ′, we deduce that the contribution of paths P such that l > 0 and I = 1 is at
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most

sN −1∑
l=1

C1 N
(2sN − 2l)!

(sN − l)!(sN − l + 1)!

σ 2sN −2l

N l

2l∑
J=1

(
2sN − 2l

J

)
J !2J

(
2l

J

)

× (2sN − 2l)!

(2sN − 4l + J )!

K 2l

N l

≤
sN −1∑
l=1

C1 N
(2sN − 2l)!

(sN − l)!(sN − l + 1)!
σ 2sN −2l

(
16K (sN − l)√

N

)2l

. (23)

In the case where sN � √
N , this is enough to show that the contribution of paths

with odd edges is negligible in the large N limit compared to the r.h.s. of (22).

3.1.2. The Cases B and C

We start with Case B. Assume that the closed even paths corresponding to
each of the I ≥ 2 clusters have respective lengths 2si , i = 0, . . . , I − 1 where
∀i, si > 0 and

∑I−1
i=0 2si = 2s − 2l. We denote these closed even paths by Wi , i =

0, . . . I − 1 as in Sec. 2.1. Let us first assume that we know the first path W0

completely, in other words, we know it starting point, all edges read in W0, and
the order in which these edges are read. Since W0 is a closed even path, its
contribution to E[T r A2sN

N ] was studied completely in Ref. 11 and can be written
as N T0,2s0σ

2s0 (1 + o(1)). We recall that the factor N up front appears because we
have N choices for the starting point of W0. As noted in Sec. 2.1 and the beginning
of Sec. 2.2, the starting points of each of the last I − 1 paths W1, . . . , WI−1 are
marked vertices of P ′. Therefore, provided we know the set of all marked vertices
of P ′, we can choose the origins of W1, . . . , WI−1 in at most

(2sN −2l
I−1

)
ways. We

recall (see also Refs. 10–12) that we select the set of marked edges at the very
beginning of the counting procedure. The order in which we choose the origins
is irrelevant since, in view of the insertion procedure defined above, it is the
unordered collection of the I − 1 paths which is relevant for the computation
here, once the first path is chosen. In addition to the chosen I − 1 origins, we also
choose J − (I − 1) vertices amongst the vertices of P ′ in at most

(2sN −2l−I+1
J−I+1

)
ways. This gives us J endpoints of the sequences of odd edges S1, S2, . . . , SJ

described at the beginning of Sec. 2.1. As in the previous subsection, the choice
of these J vertices splits P ′ into J + 1 subpaths Ri , i = 0, . . . J. Again, we
set P0 = R0, and note that the subpaths Pi , 1 ≤ i ≤ J differ from the subpaths
Ri , 1 ≤ i ≤ J only by their ordering and their directions. Therefore, there are at
most 2J J ! ways to reconstruct Pi , 1 ≤ i ≤ J from Ri , 1 ≤ i ≤ J. Following the
same calculations as in Case A, we arrive at the following upper bound on the
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contribution of paths P from Case B:

s−1∑
l=1

2l∑
j=1

2J J !

(
2l

J

)
(2sN − 2l)!

(2sN − 4l + J )!
K 2l N−l

J∑
I=2

(
2sN − 2l

I − 1

)

×
(

2sN − 2l − I + 1

J − I + 1

) ∑
s0,...,sI−1:

∑
i si =2s−2l

N
I−1∏
i=0

C1T0,2si σ
2si . (24)

It can indeed be infered from computations as in Ref. 11 that typical clusters of
paths W0, . . . , WI−1 do not share edges, which would be edges read at least four
times in P ′. To simplify the last formula, we note that(

2sN − 2l

I − 1

)(
2sN − 2l − I + 1

J − I + 1

)
≤ 2J

(
2sN − 2l

J

)
, (25)

and observe that

J∑
I=2

∑
s0,...,sI−1:

∑
i si =2s−2l

I−1∏
i=0

T0,2si ≤ constJ T0,2s−2l ≤ const2l T0,2s−2l , (26)

where const > 0 is some constant which essentially follows from the inequality

s−1∑
k=1

1

k3/2

1

(s − k)3/2
≤ consts3/2,

for some appropriate const > 0. It follows from (25) and (26) that the upper bound
in (24) is negligible compared to the contribution given by the closed even paths
(i.e. l = 0) to E[T r A2sN

N ]. Now we turn out attention to Case C. In other words,
we assume that at least one of the paths W0, . . . , WI−1 has an odd edge. As we
explained in the beginning of Sec. 2.2, the counting in this case can be reduced to
Case B or Case A. Namely, we employ the second gluing procedure to construct
I − I1 closed even paths D0, . . . , DI−I1−1 from the paths W ′

i s. Here we consider
the case where I − I1 > 1 (thus reducing Case C to Case B). If I − I1 = 1, one
reduces Case C to Case A by similar arguments. Let us assume that Di was obtained
by gluing together I ′

i + 1 paths, where I ′
i ≥ 0, 0 ≤ i ≤ I − I1 − 1. As we have

shown in the formulas (12) and (21) derived in Sec. 2.2, when we reconstruct Di

from the corresponding subset of paths from {W0, . . . , WI−1}, we obtain a factor

( (s ′
i )

3/2

N )I ′
i
(2s ′

i −2l
I ′
i

)
. Since

(
2sN − 2l

I − I1 − 1

) ∑
I ′
0,I ′

1,...

I−I1−1∏
i=0

(
(s ′

i )
3/2

N

)I ′
i
(

2s ′
i

I ′
i

)
≤

(
s3/2

N

)I1 (
2s − 2l

I − 1

)
Constl ,

(27)
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we can continue the calculations along the same lines as in Case B, just replacing
the factor

(2sN −2l
I−1

)
in (24), (25) by the l.h.s. of (27) and summing over 1 ≤ I1 < I.

In other words, one can estimate the upper bound

s−1∑
l=1

2l∑
j=1

2J J !

(
2l

J

)
(2sN − 2l)!

(2sN − 4l + J )!
K 2l N−l

J∑
I=2

(
2sN − 2l − I + 1

J − I + 1

)

×
I−1∑
I1=1

(
2sN − 2l

I − I1 − 1

) ∑
∑

i s ′
i =2sN −2l−2I1

N
I−I1−1∏

i=0

C1T0,2s ′
i
σ 2s ′

i

(
s3/2

N

)I ′
i
(

2s ′
i

I ′
i

)

(28)

using (27), (25), and (26). In particular, the expression in (28) is negligible com-
pared with the upper bound (24) from Case B for s3/2

N � N .

4. GREATER SCALES

In this Section, we set sN = N 1/2+η where η < 1/22. We prove the following
result. Let Ze (resp. Zo) be as before the contribution of even (resp. odd) paths.

Proposition 4.1. Assume that sN = N 1/2+η where η < 1/22. Then, one has that

E
[
T r AsN

N

] = Ze(1 + o(1)).

To prove Proposition 4.1, we refine the procedure we have used for powers s =
sN � √

N in the previous Section. In particular, one has to refine the numbering
of the preimages of a given path P ′. As before, we consider separately the cases
where I = 1 (Case A) and I > 1.

4.1. The Case Where I = 1 (Case A)

4.1.1. Obtaining a Bound on l

The aim of the arguments presented here is to show that the contribution of
paths with large l is negligible. We first establish a Proposition which refines the
bound on the number of ways to insert the odd edges.

Proposition 4.2. There exists a constant C > 0 such that the number of possible
ways to choose and insert the odd edges is at most

∑
1≤J≤2l

∑
1≤c≤J

1

c!
sc

N sl
N

1

(J − c)!
s J−c

N C2l , (29)
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Proof of Proposition 4.2: We start with a few remarks on how the odd edges
are split into cycles. Consider a path P with 2l odd edges split into J sequences
S1, . . . , SJ as described in Sec. 2.1. One can reformulate Lemma 2.1, as a statement
that the set of the odd edges can be viewed as a union of cycles. Note that the
number of cycles c apriori is not well defined if the cycles in the union are not
disjoint (in other words, if there is a vertex v which is an end point of more than two
odd edges). To make the definition of c precise, we have to show how we construct
the cycles. Recall the gluing procedure described in Subsection 2.1. Each time we
glue two subpaths at a common vertex v during the gluing procedure, we shall
do the following. We shall add the two corresponding sequences of odd edges,
chosen from the set of sequences {S1, . . . , SJ } so that both of the sequences have
v as an endpoint, to the cycle, or we shall start a new cycle by attaching these two
sequences together. Following the gluing procedure to the end, we end up with a
set of c cycles of odd edges.

A useful observation is that if one can insert c cycles of odd edges in a given
path P ′, then P ′ has at least c self-intersections. This can be seen as follows. Along
each cycle of odd edges, we “orient” the odd edges according to the direction they
are read for the first time in P ′. Due to the cycle structure, one of the two things
happens : either (a) there are two edges that point to the same vertex, implying that
this vertex is necessarily a vertex of self-intersection in a sense of Refs. 10, 11, or
(b) all edges in the cycle have the same “orientation” in which case the starting
point of the cycle is a point of self-intersection.

Now, we refine our insertion procedure using the cycle structure. Assume
that a path P ′ is given. Let 1 ≤ c ≤ J be the number of cycles to be inserted. To
insert the 2l odd edges, we apply the following insertion procedure:

1. We choose the instants t1, t2, . . . , tc along P ′ where the c cycles start. One
can do it in

(2sN

c

)
ways. This defines c vertices which are not necessarily

distinct. The smallest ti determines the first cycle.
2. We choose the number of odd edges that will belong to each of the cycles.

The number of ways to write 2l as a sum of c positive integers is at most(2l
c

) ≤ 22l .
3. We choose the 2l odd edges. For this, one can note that it is enough to

choose every other edge inside each of the cycles. For instance, if there are
c1 odd edges in cycle 1, it is enough to choose c1/2 edges if c1 is even and
(c1 − 1)/2 if c1 is odd (since we have already chosen the starting points of
the cycles). Note that this also defines, if there is an ambiguity, the cycle
to which each edge belongs. It follows that at step 3, we can choose the
odd edges in at most (2sN )l ways (later we will refine this bound a little).

4. We choose the J − c moments in the cycles (in addition to the c moments
that are the starting points of the cycles). This choice will give us the set
of vertices that appear as the endpoints of the sequences of odd edges S′

i s.
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For this it is enough to choose J − c edges (out of 2l odd edges) starting
or ending a sequence of odd edges and decide for each of the chosen
J − c edges whether it starts or finishes a sequence. There are at most
2J−c

( 2l
J−c

) ≤ 24l such possible choices.

At this point, we are given cycles where all the edges are known and where
we also know the end points of all Si , 1 ≤ i ≤ J. There remains to plug in the
J sequences of odd edges into the path P ′. The easiest case is when the J
vertices occuring at the J endpoints of the J sequences are pairwise disjoint.
We note that we are talking about J and not 2J endpoints of the sequences
Si , 1 ≤ i ≤ J since these sequences are the segments of the cycles. We have
already chosen the c instants t1, t2, . . . , tc where the cycles start. Therefore, it is
enough to choose a subset of J − c instants in P ′. Indeed, suppose that we have
just chosen such a subset of J − c instants in P ′. In addition to the c chosen
instants in P ′ corresponding to the starting points of the c cycles, this gives us the
J instants in P ′. To form the path P from P ′, one first copies the edges of P ′ until
one meets the vertex v1 that starts the first cycle. Then we plug in the sequence of
odd edges that starts at v1. Let us call by w1 the other endpoint of this sequence.
Having inserted this first sequence, we need to know two things to proceed. First,
we need to know the corresponding instant in P ′ where w1 occurs. In the case
when the J vertices occuring at the J endpoints of the J sequences are pairwise
disjoint, we have at most one choice for this instant among the J instants chosen
above in P ′. We then proceed by reading a portion of the path P ′ starting from w1.

To do this, we need to decide in which direction to read a portion of P ′. Namely,
we have to decide whether to read the portion of P ′ on the right or on the left of
w1, or equivalently whether we will go from w1 to the right (in the direction of
P ′) or to the left (reversing the direction of the corresponding edges in P ′). Once
we decided on this, we read the edges of P ′ until we meet the next vertex from the
set of the J selected instants. At this vertex, we plug in the next sequence of odd
edges (in general, we will have to choose one of the two possible directions), and
we iterate the procedure.

Iterating the procedure, we will have to choose a direction at most 4l times,
which gives us a factor 24l . Note that the procedure also defines the order in which
the cycles are met in P . At this point, under the assumption that the J vertices
at the endpoints of the J sequences of odd edges are pairwise disjoint, the total
number of ways to choose and insert the odd edges is at most

211l sc
N sl

N

1

c!(J − c)!
s J−c

N . (30)

Let us now consider the case when the J vertices occuring as the endpoints
of the sequences of odd edges have been chosen and are not pairwise disjoint.
Suppose for example that the vertex w1 occurs A(w1) times as an endpoint of the
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A(w1) sequences of odd edges. If we try to implement the strategy outlined above,
once we have inserted the first sequence of odd edges, there will be at most A(w1)!
possibilities for the choice of the corresponding instance in P ′ where w1 occurs.
The same argument holds for the other “multiple” vertices as well. Therefore, the
total number of ways to choose and insert the odd edges is at most

211l sc
N sl

N

1

c!(J − c)!
s J−c

N

∏
v multiple

A(v)! ≤ 213l sc
N sl

N

1

J !
s J−c

N

∏
v multiple

A(v)!,

(31)

where we estimated 1
c!(J−c)! from above by 2J

J ! ≤ 22l

J ! . While the factor∏
v multiple A(v)! in (31) can be quite large in the case of “multiple” vertices,

the path P ′ can be glued from the subpaths Pi in many different ways (see (11))
which cancells this factor once we take into account the overcounting. Namely,
suppose the path P has a vertex v occuring A times as an endpoint of a sequence
of odd edges. For such a path P , it follows that there are roughly speaking A!
ways to glue the subpaths Pi in the process of constructing P ′. Denote by E ′

i the
number of vertices v amongst the J − c endpoints of the sequences of odd edges
for which A(v) = 2i. Then

J−c∑
i=1

i E ′
i = J − c.

Note that E ′
i is uniquely determined by the choice of the unreturned edges and the

choice of the J instants. Combining (30), (31) and (11), the total number of ways
to choose and insert the odd edges, divided by the number of possible gluings of
the corresponding paths Pi is at most (given c and J )

sc
N sl

N

1

J !
s J−c

N C2l , (32)

where C is a sufficiently large constant. This holds whether the J vertices are
distinct or not. Now, one has that

∑
P with 2l unreturned edges

E(P) ≤ K 2l
∑
I≥1

∑
J

∑
E1,...,E J

J∏
i=2

1

(i!)Ei

∑
P ′

N (2l,P ′|Ei )E[P ′],

where N (2l,P ′|Ei ) denotes the number of possible choices and insertions of the
2l edges into a path P ′, knowing that amongst the J endpoints the Ei ones occur 2i
times. This follows from the fact that the insertion procedures is the reverse one to
the gluing procedure. Thus, it is enough to consider the number of possible choices
and insertions of odd edges divided by the number of possible gluings of the image
path (for any I ≥ 1) to estimate the contribution of paths with unreturned edges.
It finishes the proof of Proposition 4.2. �
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Thanks to Proposition 4.2, one can first show that paths with many odd edges
are negligible. We obtain the following bound.

Proposition 4.3. Assume that η < 1/22 and let ε < 1/4 − 5η/2. Then the paths
with more than N 1/4+η/2−ε/2 odd edges yield a negligible contribution.

Proof of Proposition 4.3: We start with a few remarks:

• It is easy to show that the contribution from the paths for which l ≥
ConstN 1/4+3η/2 is negligible, provided Const is large enough, by using the
Stirling’s formula and Proposition 4.2.

• It is also clear from Proposition 4.2 that the paths for which J < l and l >

N 2η yield a negligible contribution. We note that 1/4 + η/2 − ε/2 ≥ 2η

for η < 1/22 and ε < 1/4 − 5η/2. Thus from now on, we consider paths
such that J ≥ l and l ≤ ConstN 1/4+3η/2.

In what follows, we first restrict our attention to the case I = 1 (i.e. when
P ′ is just one closed even path). As in Sec. 3, the case I > 1 follows in a rather
straightforward fashion from the case I = 1 (this will be done in Sec. 4.2.) For the
rest of the proof we essentially need to show that l � √

sN = N 1/4+η/2 in the paths
that give the main contribution. We need to refine our estimates. When choosing
the 2l edges occuring in the c cycles, we have already seen that it is enough to
choose every other edge. Therefore, once we know the origin v0 of a cycle, we
then choose not the very first edge of the cycle for which vo is a left end point
but rather the next edge. The number of ways to choose this edge (the second one
among the edges of the cycle) is at most

M(vo) :=
∑

v1:(vov1)∈P ′
νN (v1), (33)

where νN (v1) is the number of edges which have v1 as an end point. The quantity
(33) is an upper bound of the number of vertices which are at a distance 2 from a
given vertex. Here the denomination v2 is at a distance 2 from a vertex v means
that there exists a vertex v1 such that (vv1) and (v1v2) are non-oriented edges of
P ′. �

Assume first that maxv∈P ′
∑

v1:(vv1)∈P ′ νN (v1) ≤ N 1/2−η−ε for all 0 < ε <

1/4 − 5η/2. Then the number of ways to choose and insert the unreturned edges
is at most of order

1

J !
s J

N N−l(N 1/2−η−ε)l ≤ 1

2l!
(N 1/2+η−ε)l,

so that the contribution of paths for which l ≥ ConstN 1/4+η/2−ε/2 (where Const
is sufficiently large) is negligible for all 0 < ε < 1/4 − 5η/2. which proves the
statement of Proposition 4.3 in this case.
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Now let us assume that maxv∈P ′
∑

v1:(vv1)∈P ′ νN (v1) > N 1/2−η−ε for some

fixed 0 < ε < 1/4 − 5η/2. This means that there are at least N 1/2−η−ε vertices
at a distance 2 from some vertex v in P ′. Our goal is then to show that the
paths for which M(v) > N 1/2−η−ε for some vertex v are negligible. To do this,
we first need to introduce the following quantity. Denote by κ the number of
self-intersections of type greater than 2 plus the number of non-closed vertices in
P ′. For the definitions of the self-intersections and non-closed edges we refer the
reader to Refs. 11, 12. In the notations of Refs. 11, 12, we have κ = r + ∑

k>2 knk ,
where r is the number of non-closed vertices and nk is the number of the k-fold
self-intersections. As l ≤ ConstN 1/4+3η/2, one has that κ is at most of the order
O(N 1/4+3η/2) in the typical paths as well. The reason is as follows. Below, we
appeal to some computations made in Ref. 11. Let max x(t) be the maximum level
reached by the trajectory of a Dyck path of length 2s − 2l. Let also Ps denote the
uniform distribution on the set of Dyck paths of length 2s. It can be shown that
there exist constants independent of l such that

Ps−l (max x(t) = k) ≤ C1 exp {−C2k2/(s − l)}. (34)

Furthermore, the contribution of paths with 2s − 2l edges can be estimated from
above by (see e.g. Ref. 11)

σ 2s−2l T0,2s−2l e
N 2η

Es−l

[ ∑
r,nk ,k≥3

1

r !

(
sN max x(t)

N

)r ∏
k≥3

1

nk!

(
Csk

N

N k−1

)nk
]
.

(35)

The sum in (35) is over the number of non-closed edges r ≥ 0 and the
numbers nk of the self-intersections of order k ≥ 3. The factor eN 2η

in (35) is a
rough upper bound of 1

(n2−r )! (
s2

N

N )n2−r It follows from (32) that the insertion of odd
edges multiplies the contribution of a path of T0,2s−2l by a factor of order at most

1
(2l)! (s

3
N /N )l ≤ ConstN 1/4+3η/2

. As a result, one can see that

• In typical paths, independently of l, the maximal level reached by a trajec-
tory is not greater than B2

√
sN

√
N 1/4+3η/2 which is of order B ′

2 N 3/8+5η/4.
• There are no vertices of type greater than C N 1/4+3η/2/ ln N in typical

paths.

Let then set κo,1 = ∑200
i=1 Ni and κo,2 = ∑

i>200 i Ni . Using the above calculations,
one can deduce that the contribution of even paths for fixed r, κo,1, κo,2 is at most
of order

σ 2s−2l T0,2s−2l e
N 2η 1

r !
(N−1/8+9η/4)r 1

κo,1!
(N 3η−1/2)κo,1 (

C ′sN

N 199/200
)κo,2 . (36)
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Now if κ > B1 N 1/4+3η/2 this implies that either

r ≥ B1 N 1/4+3η/2/3 or κo,1 ≥ B1 N 1/4+3η/2/200 or κo,2 ≥ B1 N 1/4+3η/2/3.

It is easy to see from (36) that one can choose B1 large enough and η sufficiently
small (η < 1/22 is enough), so that the contribution of odd paths P obtained from
paths for which κ ≥ B1 N 1/4+3η/2 is negligible.

It is crucial for the arguments presented below that 1/2 − η − ε > 1/4 +
3η/2 since ε < 1/4 − 5η/2, which implies that M(v) � κ, l for the paths that give
non-negligible contribution. Now, we split [0, 2sn] into κ intervals, in such a way
that inside each of these κ intervals we have no non-closed simple self-intersections
and no self-intersections of higher orders. Let us write M(v) = ∑κ

i=1 mi (v), where
mi (v) is the number of instants (corresponding to the interval number i of the κ

intervals into which we just partitioned [0, 2sn]) when one gets within distance
2 from the vertex v. Consider for simplicity the first interval. We first assume
that v is not a vertex chosen amongst the κ distinguished vertices. We mark the
occurrences of v inside the first interval and denote by 2l1(v) − 1 the number of
such occurences. Note that all such moments correspond to the same level of the
Dyck trajectory. Thus, calling t1 (resp. t2) the first (resp. last) occurrence of v

inside the first interval, the sub-trajectory restricted to the interval [t1, t2] is the
concatenation of l1 sub-Dyck paths. Consider now the vertices being the endpoints
of an up edge which starts at v. We say that such vertices are adjacent to v. In
order to have m1(v) vertices at a distance 2 of v, the trajectory restrited to the
first interval must come back a certain amount of times (m1(v)) to the levels of
vertices adjacent to v. As v can be a vertex of type 2, one can deduce by using
arguments similar to those of Ref. 11 that the probability of this event is at most
l4
1 exp(−C0m1(v)), where C0 is a positive constant. If v is of type 2, l4

1 has to be
replaced by l8

1 . Now, when we pass the first vertex of self-intersection at the end
of the first interval, it may happen that we come back to the last vertex adjacent
to v at some level which is not the same as in the preceding interval. Once the
level of this vertex (which can be one of the κ distinguished vertices) is fixed,
the picture is the same as in the first interval. Thus crossing one of the κ vertices
results in choosing the two moments of time where one comes back to v and to
the last adjacent vertex to v. If v is one of the κ distinguished vertices, the picture
is essentially the same.

Multiplying the probabilities over i = 1, . . . , κ and using the algebraic-
geometric inequality, one obtains the upper bound

κ∏
i+1

l4
i exp(−C0mi (v)) ≤

( sN

κ

)4κ

exp(−C0 M(v)). (37)
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It then that the contribution of the paths with M(v) ≥ N 1/2−η−ε can be
bounded from above as

1

2l!

(
s3

N

N

)l ∑
M(v)≥N 1/2−η−ε

∑
κ≤B N 1/4+3η/2

(
s6

N

κ

)κ

e−C0 M(v) (38)

and this gives a negligible contribution in the limit N → ∞. Proposition is proven.

4.1.2. Refining the Number of Insertions

We will now refine our estimate on the number of ways to insert the sequences
of odd edges. In order to do this, we need a few definitions.

For i = 1, . . . , 2l, let ci be the number of cycles that consist of i edges. Let
also, for any vertex x occuring in the pathP ′, denote by ν(x) the number of distinct
edges to which x belongs. Define νN = maxx∈P ′ ν(x). Assume that the c moments
of time are chosen when the cycles start.

We first consider the case where c1 = 0 so that c ≤ 2l/3. Then the following
holds:

1. In each cycle of odd length i = 2i ′ + 1, one needs to choose i ′ edges and
the origin of the cycle. In each cycle of even length i = 2i ′, one needs to
choose i ′ − 1 edges, the origin of the cycle, and an edge connected to the
origin of the cycle in order to completely define the cycle. From that, we
can see that the number of ways to define the cycles is at most

s
l−∑2l

i=1 ci

N ν
∑

i even ci

N s
∑

i odd ,i≥3 ci /2
N . (39)

2. Once the J − c moments of time where we split the cycles are chosen,
there are at most ν J−c

N possible choices for the corresponding instants in
P ′ where the sequences of odd edges will be inserted.

Therefore, the number of ways to choose and insert the cycles, J being given, is
at most of order

∑
c≤J

1

c!
sc

N s
l−∑2l

i=2 ci

N s
∑

i odd ,i≥3 ci /2
N ν

∑
i even ci

N ν J−c
N ≤ sl

N ν J
N

(√
sN

νN

)∑
i odd, i≥3 ci

. (40)

Let εN be a sequence going to zero arbitrarily slowly. Assume now that νN ≤ εN sα
N

where α = 1
2

1/2−2η

1/2+η
. Then one has that

∑
l≥2

2l∑
J=1

(
s4l/3

N ν
J−2l/3
N N−l

) ≤ C2

∑
l≥2

ε2l
N ≤ C3ε

2
N .

Thus the contribution of the paths for which νN ≤ εN sα
N is negligible in the large-

N -limit. We denote by νo := εN sα
N this critical scale.
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Let now J ′ be the number of instants chosen amongst the J ones such that the
corresponding vertex occurs in more than νo edges. Denote by Ai , i = 1, . . . , J ′

the number of times each such vertex occurs as an endpoint of an odd sequence.
Recall that κ = κ(P ′) := r + ∑

k≥3 knk denotes the number of non-closed vertices
of simple self-intersections plus the number of moments of self-intersections
of the order three or higher. As l ≤ N 1/4+η/2−ε/2 for all 0 < ε < 1/4 − 5η/2,
one can easily show that we can restrict our attention to the paths for which
κ ≤ bN 1/4+η/2−ε/2 for some b > 0 arbitrarily small. Now νo ∼ N−3η/2√sN �
κ ∼ b

√
sN N−ε/2, as soon as one can choose ε > 3η. Assuming that η < 1/22,

this clearly holds; thus each time one has more than νo choices for the moment of
insertion, we pay a cost of order

s2
N exp {−νo/κ} � 1,

for N large enough.
Then (40) can be refined as follows.

(
s4/3

N

N

)l

ν4l/3
o

∏
i=1,...,J ′

1

Ai !

(
ν(xi )

νo

)Ai

s2
N exp

{
− ν(xi )

κ

}
≤

(
s4/3

N

N

)l

ν4l/3
o ε J ′

N .

(41)

Thus the summation of the above on J, J ′, and l yields a negligible contribution
as soon as

N 1/4−η � N 1/4+η/2−ε/2 or η < 1/22.

We next consider the case where c1 > 0. In this case, a cycle of length one is
a loop determined by the moment of time where the loop is started. Then (39) is
replaced with

1

c1!
sc1

N

1

(c − c1)!
sc−c1

N s
l−c1/2−∑

i≥2 ci

N ν
∑

ieven ci

N s
∑

i odd ,i≥3 ci /2
N .

Thus (40) becomes

∑
c1,c≤J

1

c1!
sc1

N

1

(c − c1)!
sc−c1

N s
l−c1/2−∑

i≥2 ci

N ν
∑

i even ci

N s
∑

i odd, i≥3 ci /2
N ν J−c

N . (42)

And one still has that
∑

i≥3 ci ≥ (2l − c1)/3 = 2
3 (l − c1/2), so that the end of the

proof follows.

Remark 4.1. If c1 = c ≥ 1, then the path P ′ has loops. It can be shown that the
contribution of such odd paths is of order ( s2

N

N 3/2 )c1 N T0,2sN σ 2sN , which is negligible
as η < 1/22.
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4.2. The Case of Multiple Clusters

The computations from the preceding subsection translate to Case B as fol-
lows. Assume that I and J are given with I ≤ J . Assume also given I Dyck paths
Qi , i ≤ I , such that the total length is 2sN − 2l. We first choose the origins of the
I − 1 last sub-Dyck paths. There are

(2sN

I−1

)
possible choices for the set of vertices

occuring at the endpoint of clusters. We can indeed assume that the I − 1 last
sub-Dyck paths are ordered in such a way that their origins ui satisfy ui ≤ ui+1.

Now we choose the set of odd edges and cycles. We also choose respectively
the set of J vertices and amongst the latter the set of I − 1 vertices. As before,
there are

sc
N

c!
sl

N

possible such choices. Now there are only J − c − (I − 1) moments of time to be
chosen where one inserts sequences of odd edges, since I − 1 such moments are
determined by the I − 1 sub-Dyck paths and the preceding insertions.

Thus the number of ways to choose and insert the sequences of odd edges is
at most
∑
l>1

∑
1≤J≤2l

∑
2≤I≤J

∑
1≤c≤J

∑
si >0:

∑I
i=1 si =2s−2l

T0,2si C
l 1

(I − 1)!(J − c)!c!
sc+I−1

N s J−(I−1+c)
N

≤
∑
l>1

∑
2≤J≤2l

∑
1≤I≤J

∑
1≤c′≤J

(Const1)l 1

c′!(J − c′)!
sc′

N s J−c′
N

≤ (Const2)l T2s−2l

∑
l>1

∑
2≤J≤2l

∑
1≤c′≤J

(Const1)l 1

c′!(J − c′)!
sc′

N s J−c′
N . (43)

Thus we can use the same analysis as in the preceding case where I = 1. We again
obtain that the contribution of paths for which l > 0 is negligible in the large-N -
limit, provided η < 1/22. The contribution of paths P falling into Case C can be
deduced as before from the analysis of Cases A and B. It is not developped further
here. This finishes the proof of Proposition 1.1.

APPENDIX: THE PROOF OF (19) AND (20)

We start with (19). Let us define r1 = r1(t1) > 0 as r1 = max{r : x1(t) ≥
x1(t1), t ∈ [t1, t1 + r ]. It follows from the definition that x1(t1 + r1) = x1(t1) and
x1(t1 + r1 + 1) = x1(t1) − 1. Since

∑
l2≤2s ′

1−t1
1{x1(t)≥x1(t1),t∈[t1,t1+l2]} ≤ r1(t1), we

just have to estimate from above E2s(
∑

t1≤2s ′
1
r1(t1)). Let us fix the value 0 ≤ r1 ≤

2s. Then y(t) = x(t + t1) − x(t1), 0 ≤ t ≤ r1, is a Dyck trajectory. Also, gluing
the parts of the trajectory x(t) corresponding to the time intervals 0 ≤ t ≤ t1 and
t1 + r1 ≤ t ≤ 2s, one obtains a new Dyck trajectory of the length 2s − r1 which we
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denote by z(t). In other words, z(t) = x(t), 0 ≤ t ≤ t1, and z(t) = x(t + r1), t1 ≤
t ≤ 2s − r1. One can choose the trajectory z(·) in at most T0,2s−r1 ≤ const22s−r1 ×
(2s − r1)−3/2 ways. One can choose the instant t1 in at most 2s − r1 ways. Finally,
one can choose the trajectory y(·) in at most T0,r1 ≤ const2r1r−3/2

1 ways. As a
result,

E2s

( ∑
t1≤2s1

r1(t1)

)
≤ T −1

0,2s

∑
0<r1<2s

(2s − r1)const222s−r1 (2s − r1)−3/22r1r−3/2
1 r1

≤ Consts3/2
∑

0<r1<2s

(2s − r1)−1/2r−1/2
1

≤ 2Consts3/2
∫ 1

0
(1 − x)−1/2x−1/2dx . (44)

As always in this paper, the actual value of Const > 0 may change from line to
line.

The general case (20) can be proven by the mathematical induction on I ′
1 ≥ 1.

We have to estimate from above

E2s

( ∑
0≤t1<t2<...tI ′1

≤2s ′
1

) I ′
1∏

i=1

ri (ti ). (45)

Let us define k so that k + 1 = max{i : [ti , ti + ri ] ⊂ [t1, t1 + r1]}. We apply the
induction assumption to two sums:

(i) over t2 ≤ t2 ≤ . . . tk+1 with respect to the Dyck trajectory y(·), where
y(t) = x(t + t1) − x(t1), t ∈ [0, r1] and

(ii) over tk+2 ≤ . . . tI ′
1+1 with respect to the Dyck trajectory z(·) where z(t) =

x(t), 0 ≤ t ≤ t1, and z(t) = x(t + r1), t1 ≤ t ≤ 2s − r1. We arrive at the
following sum

s3/2

I ′
1−1∑
k=0

∑
0<r1<2s

r1
(
Constr3/2

1

)k 1

r3/2
1

(2s − r1)(Const(2s − r1)3/2)(I ′
1−k−1)

× 1

(2s − r1)3/2

≤ ConstI ′
1−1(2s)I ′

1 const

I ′
1−1∑
k=0

∫ 1

0
x3k/2−1/2(1 − x)3(I ′

1−1−k)/2−1/2dx .

(46)
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The last sum in (46) is the sum of Beta functions

I ′
1−1∑
k=0

B(3k/2 + 1/2, 3(I ′
1 − 1 − k)/2 + 1/2)

=
I ′
1−1∑
k=0

�
(

3
2 k + 1

2

)
�

(
3
2 (I ′

1 − 1 − k) + 1
2

)
�

(
3(I ′

1 − 1) + 1
)

and is bounded by the properties of the Beta and Gamma functions.
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9. S. Péché and A. Soshnikov, On the lower bound of the spectral norm of random matrices with
independent entries. in preparation (2007).

10. Y. Sinai and A. Soshnikov, Central limit theorem for traces of large random symmetric matrices
with independent matrix elements. Bol. Soc. Brasil. Mat. (N.S.) 29(1):1–24 (1998).

11. Y. Sinai and A. Soshnikov, A refinement of Wigner’s semicircle law in a neighborhood of the
spectrum edge for random symmetric matrices. Funct. Anal. Appl. 32:114–131 (1998).

12. A. Soshnikov, Universality at the edge of the spectrum in Wigner random matrices. Commun.
Math. Phys. 207:697–733 (1999).

13. A. Soshnikov, A note on universality of the distribution of the largest eigenvalues in certain sample
covariance matrices. J. Stat. Phys. 108:1033–1056 (2002).

14. C. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles. Commun. Math. Phys.
177:727–754 (1996).
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